Nonholonomic Ricci Flows of Riemannian Metrics and Lagrange-Finsler Geometry
نویسندگان
چکیده
منابع مشابه
Nonholonomic Ricci Flows: I. Riemann Metrics and Lagrange–Finsler Geometry
In this paper, it is elaborated the theory the Ricci flows for manifolds enabled with nonintegrable (nonholonomic) distributions defining nonlinear connection structures. Such manifolds provide a unified geometric arena for nonholonomic Riemannian spaces, Lagrange mechanics, Finsler geometry, and various models of gravity (the Einstein theory and string, or gauge, generalizations). We follow th...
متن کاملThe Entropy of Lagrange–Finsler Spaces and Ricci Flows
We formulate a statistical analogy of regular Lagrange mechanics and Finsler geometry derived from Grisha Perelman’s functionals and generalized for nonholonomic Ricci flows. Explicit constructions are elaborated when nonholonomically constrained flows of Riemann metrics result in Finsler like configurations, and inversely, when geometric mechanics is modelled on Riemann spaces with a preferred...
متن کاملNonholonomic Algebroids, Finsler Geometry, and Lagrange–Hamilton Spaces
We elaborate an unified geometric approach to classical mechanics, Riemann–Finsler spaces and gravity theories on Lie algebroids provided with nonlinear connection (N–connection) structure. There are investigated the conditions when the fundamental geometric objects like the anchor, metric and linear connection, almost sympletic and related almost complex structures may be canonically defined b...
متن کاملEinstein Gravity , Lagrange – Finsler Geometry , and Nonsymmetric Metrics
We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...
متن کاملEinstein Gravity as a Nonholonomic Almost Kähler Geometry, Lagrange–finsler Variables, and Deformation Quantization
A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deforma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physical Mathematics
سال: 2016
ISSN: 2090-0902
DOI: 10.4172/2090-0902.1000162